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SUMMARY 
This paper exploits the relationship of chemical equilibrium problems to geometric programming in order to study 
the effect of changes in certain parameters on the equilibrium solution. As a result of analyzing these problems from 
the geometric programming point of view we develop efficient procedures for studying the effect of changes in pressure 
and/or temperature on the equilibrium solution. In particular we develop methodsfor determining allowable ranges 
of change and within those ranges we develop formulas for computing the new equilibrium solution. These develop- 
ments are illustrated with an example. 

1. Introduction 

An important  class of problems that can be viewed as constrained non-linear optimization 
problems can be categorized as chemical equilibrium problems. These problems consist of 
minimizing the Gibbs Free Energy of a system subject to a set of mass balance equations. The 
wide range of potential applications of these models has been demonstrated ~l, 2, 6, 9] ; also 
each chemical equilibrium problem is essentially a dual geometric program [6, 8]. It is the 
relationship of chemical equilibrium problems and geometric programming that will be ex- 
ploited in this paper. 

Since this class of problems deals with chemical thermodynamics the pressure and tempera- 
ture of the system are two important  parameters. To date, little has been said with respect to 
studying the effect of changes in these parameters on the equilibrium solution and what range 
of changes are possible without having to completely resolve the problem. The purpose of this 
paper is to present efficient procedures for performing such sensitivity (or post optimal) 
analysis on chemical equilibrium problems from a geometric programming point of view. 

The calculation of the equilibrium composit ion of a system has been widely discussed in the 
literature. The classical method for solving this problem is the "equilibrium constant method" 
[-7, 10]. Inorder  to deal with more complex chemical reactions, for example organic compounds,  
the problem has been posed in the form of minimizing the free energy function; which can be 
dealt with using convex programming methods [-1, 91 . In addition several authors [-6, 8] have 
shown the relationship to geometric programming. 

We give a brief discussion of the chemical equilibrium problem and its relation to geometric 
programming in order to motivate the development of the following sections. 

The free energy of a mixture of n chemical containing x i moles of the i th species can be 
expressed as: 

F(x) : ~ f~, (1) 
i = l  

* This author's research was supported in part by the Center for the Study of Environmental Policy, The Pennsylvania 
State University. 
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where x = (x 1, x2 , . . . ,  Xn) and f~ = x i [Ci + In (x~/ff)], C i = (F~ + In P, P = system pressure 
in atmospheres, T =  system temperature (Kelvin), ff = Z~= ~ x~, F~  T =  Molal standard (Gibbs) 
free energy function. 

The free energy, (F~ of each species are obtainable directly from tables but are more 
often derived from the more commonly tabulated function ( T - 1 F  ~  T - a H ~  [10]. 

The determination of the equilibrium composit ion is equivalent to finding the non-negative 
set of values, x~, which minimize (1) and satisfy the mass balance constraints 

aijx i=  ej ,  j =  1, . . . ,  m ,  (2) 
i=1  

where m = the number  of chemical elements, 
aij = the number  of atoms of element j in a molecule of species i, 
ej = initial number  of moles of element j in the mixture. 

The above is an example of a homogenous or single phase system; in order to allow for 
heterogenous or multiple phase models the development is extended by requiring Xk=Y, Ek~X ~ 
where [k] indicates the k th = 1 . . . .  , p phase. 

Using the notation of Duffin, Peterson and Zener [6], that is x i = 6 i and ffk--2k, the chemical 
equilibrium model is: 

min R T  = rain (6~C~+ ~5i In 6i) - 2k In 2k, (3) 
i=2  k = l  

s.t.' ~ aij) i=  ej , j =  l, ..., m , (4) 
i = 2  

where 
6i>=0 , i = 2 ,  ..., n ,  

f P 
R-T = ~ F k / ( R T )  = total free energy.  

k = l  

The above model can be transformed to a dual geometric program (see [6, 8, 9] for complete 
details). 

max v(a) = max exp [ - F / R T ]  = (ci/6i) a  ̀ 1-[ ~" ~k , (5) 
i=1  k = l  

subject to: 6~ = 1, 

• ai/~ i =  O, j =  1 . . . .  , m ,  (6) 
i=1  

hi>=0, i = 1  . . . .  ,n ,  

1, for i = 1 ,  (7) 
where c i = e x p [ - F ~  i = 2  . . . .  , n ,  

a l j =  - e j ,  j =  l , . . . , m .  

Several numerical procedures have been proposed as methods of obtaining solutions to 
these problems El, 8, 9]. In this paper we are not concerned with the method of optimization 
and the procedures to be developed are independent of the method of optimization. We do 
assume the system (6) has been put into the form: 

d 

= b ~~ + ~ r~b~, (8) 
j = l  

where d =  n - m - 1  is the degree of  difficulty of the program [6];  the rj are new independent 
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variables such that (6) > 0; and b (~ j =  O, 1 . . . .  , d are linearly independent nullity vectors [6]. 
For large problems the representation (8) can be obtained by using a Gauss-Jordon procedure. 
This representation plays a key role in the discussion that follows. 

2. Sensitivity analysis via geometric programming 

The original development of Duffin, Peterson and Zener [6] and the modifications of Dinkel 
[3, 4] with respect to the primal geometric program provide a systematic procedure for studying 
the effect of changes in pressure and temperature. The basis for this analysis is the following 
theorem which is a modified version of Theorem 1 [6]. 

Theorem 1. Let  the n x m matrix (aij) have rank m and assume d > O. I f  for  some coefficients 
c ~ ..., c o the dual program has optimal solution 3" >0  and i f  the matrix J(6*) with elements 

h(i) h(j) p ~(i) ~(j) 
Jij(b.  ) = ~o v, ~ ,~k , ~  i, .j = 1, d (9) 

o = ~  6 ~  k = l  ;~* ' " '"  ' 

is non-singular, then the function which gives the optimal value of  v(6*) in terms o f  variable 
coefficients c2, . . . ,  c, are differentiable with respect to c~, i=  2 . . . .  , n. A t  f ixed,  but arbitrary 
points c, these difJerentials are: 

dv ~ dc i 
v~ = 6* - - ,  (10) 

i=2 Ci 

= ~1(3,) Z b?~ 
j = l  k = l  i=2 Ci 

i =  2, ..., n ,  (11) 

where the elements o f  J(6*) are given by (9). 

As can be readily verified the above is a restatement of Theorem 1 [6] where (11) results from 
equations (9), (11), (12) [6] and since c1= 1 in all chemical equilibrium problems the term 
associated with i=  1 has been deleted. In order to make use of this result we discuss the as- 
sumptions of Theorem 1 in terms of chemical equilibrium problems. 

1. rank (alj) = m implies the m chemical elements of the system are independent, which is 
the case by the definition of element. 

2. 6* > 0 implies a strictly positive solution. Once again this is true for all well formed pro- 
blems, for if some 6* =0  then the associated 2 k - 0  which implies that phase is absent from the 
final solution. Thus in a correctly formulated p phase system all 3" >0  in order that the system 
contain p phases at equilibrium. 

3. The remaining assumption is that J (3*) is non-singular. Theorem 2 [6] gives a condition 
which guarantees the existence of J(6*)- 1 (rank (blJ))=d, i=  1 . . . .  , no; .]= 1, ..., d). However 
this condition is rarely met in chemical equilibrium problems since no = 1 and usually d > 1. 
Thus we must verify the non-singularity of J(6*). Once the representation (8) is known (9) 
provides a convenient means of constructing J(6*). 

Also, as noted in [-6], J (6") is the Hessian matrix of log v (6) with respect to rj. Thus if a 
second-order optimization technique (e.g. Netwon-Raphson) [5] is employed to determine 
the optimal solution then J (6")- 1 will automatically be evaluated. For reasons t 9 be discussed 
later we will use the construction given by (9). 

We also note that formulas for changes in the primal variables t j , j  = 1, ..., m can be developed 
[3, 6] ; however since the dual program is the one of interest we do not pursue those relation- 
ships here. 

Assuming the non-singularity of J (6") we turn our attention to analyzing the effect of changes 
in pressure and/or temperature on the equilibrium solution. Since the assumptions of Theorem 
1 are satisfied the following development is based on the maintenance of 6i > 0 for changes in 
P and/or T. Before giving this development it is necessary to point out the correct interpretation 
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of dr~v* and dci/c i in Theorem 1 for chemical equilibrium problems. From (7), we have c i = 
exp ( -  Ci) where C i = F~ T+ In P;  thus a change in P and/or T implies a change in - C~ which 
in turn implies a change in In c~ (ln c~ = - C~). Thus dcJc i = d [exp ( -  Ci)]/ex p ( -  Ci)= d ( -  Ci) 
which will be interpreted as A(-Ci)=A In c~=ln c i - l n  ci; where c' i, c~ are the new and 
original coefficients. Similarly, since v (5)= exp ( - F / R T ) ,  we have from (7), a change in -C~ 
implies a change in In v(5). Thus 

d [In v (6*)] - dv (5*) _ d [exp (52 5} ~ ( -  C~)- In 5* + Z 2* In 2*)] = Z 5* d ( -  Ci). 
V l) 

In the results that follow dcdc i will be interpreted as In c'~-In c~ and dv(5*)/v will be inter- 
preted as In v'(5)-in v(5) where the prime (') denotes the new value of coefficient or objective 

function.  We also note that the above interpretations are obtainable directly from the free 
energy form by computing the difference between the new and old values. 

At this point it is important to note the effect of the above interpretation of dc~/c~ and its 
effect on Theorem 1; in particular the effect on equations (9)-(ll) .We see from Theorem 1 the 
results are stated in terms of differential changes in the coefficients and the evaluation of J -  
at the point 5* for such changes. The above discussion has the effect of approximating these 
differential changes by the difference form in c'~- In c~ which from a practical point of view is 
important since we want to consider discrete changes in the parameters of the system. However 
we also note from equations (9)-(11) that the evaluation of J -  1 remains at the point 5" ; thus 
for "large" changes in the c~ the evaluation of J 1 at 6" is a source of error in the results that 
follow. In order to compensate for this error we need to develop procedures that allow for the 
updating of the evaluation of J -  1. That is, since the value of J -  1 depends on 5 and 5 is a function 
of cl (for sensitivity analysis purposes) the evaluation of J -  ~ should be a function of changes in 
the coefficients. Specifically for a small change in the c~ we need to consider J (5* + dS) where d5 
is determined via (11). Following the development of our initial results which will define 
approximate ranges of allowable changes we will develop an incremental procedu re which will 
be used to  refine these estimates through the updating of the evaluation of J -  1 

With these remarks in mind we begin our characterizations by determining the approximate 
range of allowable changes in the system pressure. In particular we suppose the system pressure, 
P, changes to P + A and we want to approximate the range of changes for which the analysis of 
Theorem 1 is valid and the effect of such changes on ' the equilibrium solution. 

Theorem 2. 
In P - In (P + A) i = 2 .... , n. Also the allowable range of changes is given by : 

A > max { P e x p ( a * D : , l ) - P , - P } ,  if l n P - l n ( P + A ) > O ,  
I : D ~ < O  

A < min {Pexp(5*DF1)-P},  if l n P - l n ( P + A ) < O ,  
i:Di> 0 

where 

Di= ~ IblJ)~, J~1(5") ~ blk)}, i=2 , . . . , n ,  (14) 
j = l  k = l  i = 2  

and/fDi=0 then A is unrestricted. 

Proof 
We have already shown that dci/cl = In c}-In  c i when In c~ = - F ~ / R T  + In P: thus dcjc~ = 

t -"Ir In P - I n  (P+  A). Since 6~= 5i + dSi we need to determine thosechanges which will maintain 
61 > 0. That is, since the hypothesis of Theorem 1 are satisfied we need only maintain a strictly 
positive solution. Thus, from (11), we have: 

0 = 5 1 =  5 F + d 5 i = 5 ~  -t- j=l~ { blj) k=l ~ [Jfkl ~f~ b'kq}i=2 [ l n P - l n ( P + z J ) ]  

= 6" + D~ [ln P -  In (P + A)] = 5" + D~ In (PIP + A). (15) 

I f  the system pressure changes to P + A then each coefficient changes as: dci/r i= 

(12) 

(13) 
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Now if In (PIP + A) > 0 (i.e. In P > In (P + A)) we need evaluate those changes for which D i < 0; 
for if Di > 0 then 6'~ is always strictly positive. If, in addition, D~ v~ 0 then In (PIP + A) = - 6* D[ ~ 
or A = P  exp (8*D/- 1)_p.  

Thus in order to maintain 61 > 0 we obtain 

A > max { P e x p ( 3 * D 7 1 ) - P , - P } ,  
i :Di<O 

where the - P  has been added to the above operation to insure that In (P + A) is well defined. 
If Di=O we note from (15) that 8'~=3" and thus the equilibrium solution does not change. 

Similarly, if In (PIP + A) < 0 we evaluate D, > 0 to obtain : 

A < min {P exp (3" D 7 1)__ p} .  
i:Di > 0 

Combining these results completes the proof  of the theorem. 

The above result presents a range of allowable changes in the system pressure and within this 
range the representation (10), (11) can be used to compute the new equilibrium solution. For  
any A satisfying (12), (13) the new solution can be computed as: 

81 = 8" + [ln P - l n ( P + A ) ] D i ,  i=  2, ..., n ,  (16) 

for the new equilibrium composition 

In v ' =  In v*+[ ln  P - l n ( P + A ) ]  ~ 8[ (17) 
,=2 

for the new value of the objective function. 
At this point we note that the use of the above results and those to follow must be used within 

an additional assumption implicit in the model formulation. This assumption is that the system 
obeys the perfect gas law and clearly large changes in the system pressure can violate this 
assumption. Also large changes in pressure and/or temperature may cause the original reac- 
tions to be altered. Thus even though the above analysis indicates a large range of allowable 
changes, for example see Example 1 of the next section, one must take into account the above 
remarks. 

A similar analysis can be applied to study changes in temperature and pressure and tempera- 
ture. However we note that changes in temperature also cause a change in each F ~ as well and 
this change does not allow the separability apparent in Theorem 2. Nevertheless it is possible 
to use the preceding development to study such changes. In fact the preceding development is 
directly appliable with some minor modifications. 

If T changes to T +  A T then F ~ also changes to F ~ + AF ~ Let the new value of Ce be denoted 
as C' i= C i+ ?, where 7~ reflects both of the above changes. 

Following the development preceding Theorem 2 it follows that 

dc, ( - C ' , ) - ( - C , )  = - 7 , .  (18) 
s 

If, in addition to a change in T, we also have a change in pressure to P + A then (18) becomes: 

dci 
- In P - l n ( P + A ) - 7 , .  (19) 

cl 
We obtain the following version of Theorem 2 for changes in temperature or both pressure 

and temperature by substituting the above relationships into Theorem 1. 

Theorem 3. I f  the system pressure changes to P+ A and the system temperature changes to 
T+ A T under the conditions of Theorem 1 then the change in the equilibrium solution is computed 
a s  

d8 i = ~ blj) ~1 -ih tk) [In P - I n  ( P + A ) - ? i  , i = 2, ..., n . (20) 
j = l  k = l  i = 2  
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Moreover if the changes are such that ~* + d6 i >0 for all i then the new equilibrium solution is: 

~i 6"+d61, i = 2 ,  . . . ,n (21) 

l n v ' = l n v *  + ~ 6 * [ l n P - l n ( P + A ) - y , ] .  (22) 
i = 2  

This result follows from a substitution of (18), (19) into (10), (11). We note that we do not obtain 
the range analysis of Theorem 2 due to the dependence of ?~ on F ~ and as a result the analysis 
is better suited to a point wise analysis. That is, for a given change in temperature and/or 
pressure one can readily determine via (20) whether all 61 > 0. If this condition is satisfied then 
the new solution is computed via (21) and (22). 

The results presented so far deal with changes in the coefficients of the primal GP which 
reflect changes in the system pressure and/or temperature and result directly from the original 
works of Duffin, Peterson and Zener [6]. Another set of parameters of interest is the initial 
concentration of the various elements ; that is, we want to be able to study variations in the 
e j, j = 1, ..., m of (4). As can be seen from (7) such variations imply the changing of the primal 
GP exponents, a situation not treated by the results of [6]. The special structure of (4) will 
enable us to develop results for analyzing such changes. The analysis that follows is based on 
the following result [6]: 

Let l n K ~ =  ~, b! j) lnc i ,  j = 0 , 1 , . . . , d ,  (23) 
i=1  

and using the representation (5) we have: 
d p 

In v(6) = In K o + ~ rj In K~ - a/(r) In 6~(r) + 2 2k(r)In 2k(r). (24) 
j = l  i=2  k = l  

Then r is an optimizing point of In v(6) if and only if 

In Kj = bl a' In 6,(r) - Z )@ In 2k(r), j = 1, ..., d .  (25) 
i = 2  k = l  

We use the ~tbove to state the result of interest: 

Theorem 4. 
.j= 1, ..., d changes. The change in the equilibrium solution is" 

d l n v =  d 6 i [ l n c i - l n 6 i - 1  ] + ~ d2k[ ln2k+l] ,  
i=2  k = l  

where 
d 

6 i=b~~ ~ rjbl j). 
j = l  

Moreover the new equilibrium solution satisfies: 

dr = J - I ( 6 * ) M ,  
where 

M , =  _ { ~ bl') 2~" } 
a5 ebl~ ' 

Suppose the ej of  (4) change by some differential amount such that in (8) no b (~, 

(26) 

j =  1, ..., d.  

{27) 

Proof 
Equation (26) is a direct result of considering the logarithm of (5) and differentiating the 

result with respect to ej and setting db (j) = O, j = 1, ..., d. Equation (27) results from differentiating 
(25) with respect to ej and noting that if no b I j), j =  1 . . . . .  d changes then d[ln Kj]/dej=O, 
j = 1, ..., d. Also the resulting terms in d [In Kj] form the elements of J -  1 (6*); for example see 
equation (11), [6]. 

Once the solution to (27) has been determined the new equilibrium solution is computed as : 
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d 

d(3,= db~ ~ + ~ dr.b! , , i=  2, ..., n . (28) 
j = l  

As in the analysis of changes in pressure and/or temperature we will replace dbl ~ by the dif- 
ference from bl ~ ---ih (~ representing discrete changes in the ej. 

As noted previously these approximations and the evaluation of J 1 at 3" is a source of 
error in the calculations; also from (27) we see that with respect to changes in the ej the error 
is compounded since M is also a function of ~*. In order to deal with this error we introduce a 
procedure which updates the evaluation of J -  ~ and M. The procedure is readily incorporated 
into the results of the previous theorems to yield improved estimates on the ranges of allowable 
changes and the new equilibrium solution. 

The basic idea of this incremental procedure is to divid~ a particular change, in the coefficients 
or e j, into a sequence of small changes. The new solution is computed for each element of the 
sequence and this is used to update the evaluation of J -  t. That is, suppose In c' i -  in ci= A, 
some arbitrary change, choose a positive integer K and define the incremental change A/K and 
.... , ~(k) + k A /K for k = 1, K. The choice of K th~ associated sequence of changes in c!k+l)=ln ~ ..., 
is arbitrary and should be such that A/K represents a small percentage change in the coefficient 
(say 10 ~o). Clearly the larger the value of K the smaller the increment and the number of times 
the evaluation of J ~ is updated will be increased. The results presented so far assume K = 1 
and we now suppose K > 1. The incremental procedure is : 

for k=  1 determine the change in the equilibrium solution via (11) as d6 (1) which is used to 
compute the new equilibrium solution 6" + d3 (1). For  k = 2 the new change in the equilibrium 
solution (for a change in the coefficient of A/K) is computed as before except that in (11) the 
evaluation of J -  1 is at the point 6 " +  d3 ~). The new change d~ (2) is used to compute the 
equilibrium solution 6"+ d6(~+ d6 ~2) and the procedure is repeated a total of K times. 

If we have chosen A as the original bounds from Theorems 1 and 2 the above procedure will 
indicate if these bounds are overestimates of the true bounds. For  example, if at some point in 
the above process some 6(k)< 0 the procedure is stopped and new bounds are computed from 
the point 6 (k- ~). On the other hand if 6 (K) > 0 Theorems 1 and 2 can be applied at the point 
~* + EkK= ~ d# k) to obtain an improved set of bounds. This procedure improves the results of 
equations (9) and (11) since in place of evaluating J -  ~ at ~* we obtain updated values as 
J-a((5*+ dc~(~)), J - x (6*+ d6 ~) +d~ (2)) and so on. Also the evaluation of M in (27) is similarly 
updated for changes in the ej. 

3. Numerical results 

In order to illustrate the development of the preceding section we present a small example. 
While this is a small example it does illustrate the computation procedures. 

3.1. Water-gas reaction [10] 

According to the above reference [10] we consider the reaction 

C O + H 2 0  --, C O 2 §  

at P =  1 atmosphere, T=  1095~ with a starting state of 1 mole each of CO and H20 .  The 
geometric program associated with this reaction, according to (5-7), is' 

5 

max v(6) = [ I  (ci/6i)~i)@, 
i = 1  

subject to 6~ = 1, - 6 1  + 6 3 +  ~ =  0 ,  
(29) 

- -  ( ~ 1 - ] - ~ 2  -~ ~4=  0 ,  6 i > 0 ,  i = 2 , . . . , 5 ,  

- 2 b a + b z + C ] 3 + 2 6 4 =  0 ,  
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T A B L E  1 

F~ / R T + In P for  water-gas reaction 

J. J.  Dinkel ,  R.  L a k s h m a n a n  

i Spec ies  P = 1 atm. P = 2 atm. P = 1 atm. P = 2 atm.  P = 1 atm. P = 2 atm. 

T =  1 0 9 5 ~  T =  1 0 9 5 ~  T =  1 2 0 0 ~  T =  1 2 0 0 ~  T =  1 2 7 1 ~  T =  1 3 7 1 ~  

2 C O  - 37.423-) - 36 .7367 - 36 .6705 35.9773 - o . . . . .  25.2515 

3 H 2 0  - 50.3023 - 49 .6091 - 48 .4106  - 47 .7175 - 46.0221 - 45 .3290  

4 C O  2 - 70 .8924  - 70 .1992  - 67 .6020  - 66 .9089 - 63 .4167  - 62 .7235 

5 H 2  - 16.7936 - 16 .1004 - 17.1604 - 16.4673 - 17.5876 - t 6 .8945  

T A B L E  2 

Equilibrium solutions for  water-gas reaction 

(3" Species P = I P = 2 P = I P = 2 P = I P = 2 

T =  1 0 9 5 ~  T =  1 0 9 5 ~  T =  1 2 0 0 ~  T = 1 2 0 0 ~  T = 1 3 7 1 ~  T = 1 3 7 1 ~  

2 C O  0 .505025  0 .505025  0 .53975 0 .53975  0 .59417  0 .59417  

3 H 2 0  0 .505025 0 .505025  0 .53975 0 .53975  0 .59417  0 .59417 

4 C O 2  0 .494975  0 .494975  0 .46025 0 .46025  0 .40583  0 .40583 

5 H 2 0 .494975  0 .494975  0 .46025 0 .46025  0 .40583 0 .40583 

21 T o t a l  2. 2. 2. 2. 2. 2. 

M o l e s  

In  v(3*)  90 .478789  89 .092406  87 .700687 86 .31439  84 .194276  82 .807978 

where ca = 1 and the other constants for various system conditions are given in Table 1. 
Employing the optimization procedure described by Dinkel et  al. [5] we obtain the equi- 

librium solutions listed in Table 2. We note these results agree with those obtained via the clas- 
sical "equilibrium constant method" [10]. These results are presented as a basis for comparison 
of our sensitivity analysis. 

To" begin our analysis we note the reduce6form (8) of the system (23) is : 

1 
= = 1 + r t . 6 b ( ~  (1) 

Since d = 1 the matrix J (6) is 1 • 1 and is constructed as : 

h(1)h (l) 21a)2~ 1) 0 (-- l ) ( -  1) ( - -1)(--  1) 
J1 -a va -- + + + 

a 
6" 2* 1 0.505025 0.505025 9 = 1  

1 0 
+ - 8.00081. Thus J71 a = 0.12499. 

0.494975 2 

0.494975 

We begin by studying changes in the system pressure. As can be seen from Table 2 changes in 
the system pressure from 1 to 2 atmospheres do not effect the equilibrium solution; in fact we 
know from thermodynamic principles that  any change in system pressure, so long as the perfect 
gas law assumption is met, will not change the equilibrium solution. These facts are recoverable 
via our analysis as follows: 

If P changes to P +  A we compute from (11) and Theorem 2: 

d6~= h(i)~-~ ~ h(i) dq '-'i ,,11 ~i - -  = D i [ l n P - l n ( P + A ) ] .  
i = 2  Ci 

However  since ~s ~ a ) _  _ 1 - 1 + 1 + 1 = 0, we have da ,  = 0, i = 2, 5, and thus the equi- *"'i= 2 '-'i - -  " " ,  
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librium solution does not change for a pressure change - P  < A. For  the objective function 
we have from (17): 

In v ' - l n  v* = &, dcj = In 2 ~ ~5" = -1.38629 
i = 2  Ci i = 2  

which agrees with the results of Table 2. 
For changes in the system temperature it follows from Theorem 3 that 

d6 z = b~l) J;11 {b(21)(- y2)+ b(31)(- ya)+b]')(-  74)+ b~l)(- 75) } 

= -0 .125 { 7 2 + 7 3 - - 7 4 - - 7 5 }  , 

d~4 = 0.125 { 7 2 + 7 3 - 7 4 - 7 5 } ,  

d63 = d ~  2 and d65 ~- d64. 
Thus 

and 

t 
0 = 32 ---= ~ +dc] 2 implies 7 2 + 7 3 - 7 4 - 7 5  = 4.04, 

0 = 6'4 = 6"+d64 implies 72--t-73-];4-75 = - 3 . 9 6 .  

Thus the range of allowable changes is: 

- 3.96 < 72 + 73 - 7 4 -  75 < 4.04. (30) 

For each of the temperature changes of Table 1 the corresponding values of (24) are : 

T = 1095 to T = 1 2 0 0 : 7 2 + 7 3 - 7 4 - 7 5  = -0 .27844 ,  

T =  1200 to T - -  1371: 7 2 + 7 3 - 7 4 - 7 s  = -0 .44385 ,  

T = 1095 to T = 1 3 7 1 : 7 2 + 7 3 - 7 4 - 7 5  = -0 .72229 .  

For the first case we compute the new solution as: 

d6z = d83 = - 0.125 ( -  0.27844) = 0.034805, 

d84 = d65 = 0.125 (-0.27844) = -0 .034805,  

In v ' -  In v* = - 2.7829, 

which is comparable to the results of Table 2. To illustrate the effect of the iterative procedure 
suggested as the end of Section 2 we note that if we compute according to Theorem 3 In v' - In v* 
for T =  1095 to T =  1371 we obtain 6.3169; while if we compute first for T=  1095 to T =  1200 
and then T =  1200 to T-- 1371 we obtain 6.30149 which is closer to the value 6.2845 obtained 
from Table 2. 

Finally if both P and T change we have from Theorem 3 and employing the fact that 
Y.bl 1) In (1 + A)=0  the same representation (24) as for changes in temperature only. The use 
of the other formulas of Theorem 3 yield results comparable to the results of Table 2. 

To illustrate the results of Theorem 4 and the potential of the incremental procedure suppose 
we change the initial concentration to 2 moles of CO and 1 mole of H 20. Changing the con- 
centration of CO changes e I to 2, e 2 to 3 while e3 remain at 1. The new b (~ is given by : 

b(0) = l l  with b C1) as given before. 

-o\0/ 
Treating the above change db(z~ 1 as a single increment (K = 1) we compute the new equi- 
librium solution according to (27) where 

M1 = - (b~" db~)/6 *) -- 1.980198, J~-( = 0.12499. 
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TABLE 3 

Equilibrium solution for 2 moles CO, 1 mole I4,_0 

GP 1 10 
Solution Increment Increments 

62 1.339302 1.257575 1.3319611 
63 0.339302 0.257575 0.3319611 
64 0.660698 0.7424247 0.6680389 
65 0.660698 0.7424247 0.6680389 

In v(6) 128.9425 129.27901 129.0286 

J. J. Dinkel, R. Lakshmanan 

Thus dr=0.2475247 and employing (28) the new equilibrium solution is computed. These 
results are given in Table 3 along with the GP solution for the problem. As can be seen from the 
results of the table the sensitivity analysis results contain a good deal of error. In order to 
refine these results we employ the incremental procedure with K = 10. That is, we consider the 
sequence of problems with the incremental change of 0.1 ; thus the values ofb(2 ~ are 1.1, 1.2, ..., 2. 
Table 3 also contains the results for these computations and as is readily apparent provides very 
accurate results. 

As noted previously these improved results are due to the updating of the evaluation of the 
matrix J -  1 from 6" to (5* + dr5. In terms of the example this procedure reduced the error by a 
factor of 10 and for problems where the degree of difficulty is large (and hence J is d • d) 
this procedure should greatly improve the accuracy of the results. 

4. Conclusions 

The results of the preceding sections demonstrate an efficient procedure for determining the 
effect of changes in system parameters in the context of chemical equilibrium problems. The 
authors have tested the above procedures on more complex problems, e.g. the combustion 
of propane [7], with similar results. Thus the geometric programming approach to chemical 
equilibrium problems in addition to providing a means for obtaining equilibrium solutions 
also provides a convenient method for analyzing changes in the system parameters. The use of 
such analysis would seem to be of particular importance with respect to mathematical models 
of biological systems [2]. 
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